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Abstract

Two of the main research threads in AI revolve around the development of data-based learners
capable of inferring behavior and functions from experience and data, and model-based solvers
capable of tackling well-defined but intractable models like SAT, classical planning, and Bayesian
networks. Learners, and in particular deep learners, have achieved considerable success but result
in black boxes that do not have the flexibility, transparency, and generality of their model-based
counterparts. Solvers, on the the hand, require models which are hard to build by hand. RLeap
is aimed at achieving an integration of learners and solvers in the context of planning by address-
ing and solving the problem of learning first-order planning representations from raw
perceptions alone without using any prior symbolic knowledge. The ability to construct
first-order symbolic representations and using them for expressing, communicating, achieving, and
recognizing goals is a main component of human intelligence and a fundamental, open research
problem in AI. The success of RLeap requires the development of radically new ideas and methods
that will build on those of a number of related areas that include planning, learning, knowledge
representation, combinatorial optimization and SAT. The approach to be pursued is based on a
clear separation between learning the symbolic representations themselves, that is cast as a combi-
natorial optimization problem, and learning the interpretations of those representations, that
is cast as a supervised learning problem from targets obtained from the first part. RLeap
will address both problems in the settings of planning and generalized planning where plans are
general strategies. The project can make a significant difference in how general, explainable,
and trustworthy AI can be understood and achieved.

1 Introduction

The project RLeap aims to address and solve a fundamental research problem that is at the heart of
the current split between data-based learners and model-based reasoners (solvers) in AI: the
problem of learning symbolic representations from raw perceptions. The popularity of data-
based learners over model-based solvers is that data is easily available but building models by hand
is hard. Yet data-based learners lack the flexibility, transparency, and guarantees that are associated
with model-based systems [LUTG17, Pea18, Dar18, Gef18]. By showing how to learn meaningful,
symbolic models form raw perceptions alone, RLeap aims to integrate the benefits of both. The
context for learning representations is planning where representations play a key role in expressing,
communicating, achieving, and recognizing goals [SA77, CL90, RG09, PC09, Gef13, SRBS16].

For an illustration of the representation learning problem for planning addressed by RLeap,
consider a range of 2D worlds where an agent must learn to achieve goals from scratch from raw
perceptions alone (images) and no prior symbolic knowledge. The agent has to learn about
the world in a flexible manner so that the knowledge gained for achieving goals in some worlds can
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be reused to achieve related goals in other worlds. The goals are to be conveyed to the agent in a
formal language whose grammar may be known to agent but whose symbols and meanings are not.
The meanings of these symbols have to do with the objects and relations in the world which are not
directly available to the agent who sees raw images only.

A version of the problem appears in the recent paper BabyAI: A platform to study the sample
efficiency of grounded language learning by Yoshua Bengio and co-authors [CBBL+19]. In the paper,
the authors describe a simulation platform for a class of 2D worlds featuring a number of objects
and an agent that accepts goal instructions expressed in a context-free language. The agent learns to
interpret and carry out the given goals from scratch by learning to maximize expected reward using
deep reinforcement learning [MKS+15, SHM+16, SSS+17, SHS+18]. Among the conclusions, the
authors state that “the methods scale and generalize poorly when it comes to learning tasks with a
compositional structure.” Hundreds of thousands of demonstrations are needed indeed to learn tasks
which are trivial by human standards, and some simple tasks are not learned reliably at all.

The problem of representation learning for planning, while simple to describe and central to AI,
is largely unsolved, and current ideas and methods prove to be inadequate. Indeed, two
characteristics of deep reinforcement learning that have to do with its successes and its failures are
its ability to deal with high dimensional perceptual spaces from scratch without prior knowledge,
combined with its inability to use or produce such knowledge. Humans, on the other hand, excel at
using prior knowledge when dealing with new tasks and at producing such knowledge when solving
related tasks [LUTG17, Mar18a, Mar18b]. Certainly, the construction of reusable knowledge from
experience (transfer learning) has been a central concern in reinforcement learning [TS11, Laz12] and
in recent work in deep reinforcement learning [GDL+17, BBQ+19], but the semantic and conceptual
gap between the low level techniques that are used, (neural network architectures and loss functions)
and the high-level representations that are required (first-order representations involving objects
and relations), remains just too large [AF18, TBF+18, FLBPP19, Asa19, GS19].

RLeap will develop the formulations and algorithms for showing how first-order symbolic rep-
resentations involving objects and relations can be learned automatically from data without using
any prior symbolic knowledge. Unlike current work in deep reinforcement learning, these represen-
tations will not be expected to emerge bottom-up from the learning process but will be forced top-down.
We know indeed the structure of the first-order representations that are used in planning and the ben-
efits that they have: they can be used to attain a variety of compound goals (compositionality), can
be reused easily in a variety of problems (transfer), and can be queried at a high level of abstraction
(transparency). There is thus no need to re-discover the structure of these representations nor to
learn alternative ones that lack these properties. The challenge is to learn them from data.

2 Motivation

The current excitement about AI is the result of a number of breakthroughs in machine learning.
[KSH12, GMH13, HZRS16, SHM+16, SSS+17]. Learners, like solvers, can be understood as programs
that compute mappings from inputs x into outputs f(x) by solving well-defined mathematical tasks
[Gef14, Gef18]. In deep learning (DL) and deep reinforcement learning (DRL), training results
in a function f that has a fixed structure given by a deep neural network [LBH15, GBC16] and a
number of adjustable parameters. In DL, the input vector x may represent an image and the output
f(x), a classification label, while in DRL, the input x may represent the state of a game, and f(x),
the value of the state. For solvers, the input x represents a model instance, and the ouput f(x), the
solution to the instance x. Solvers have been developed for a variety of models that include constraint
satisfaction problems (CSPs), SAT, answer set programs, Bayesian networks, classical planning, and
various forms of probabilistic planning [Dec03, BHvM09, GKKS12, Pea88, GB13, Ber95].

The distinction between data-based learners and model-based solvers is reminiscent of the distinc-
tion between Systems 1 and 2 in current psychologies theories of the human mind (Kahneman’s Fast
and Slow Thinking): the first referring to the intuitive mind that is fast, associative, unconscious,
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effortless, and parallel; the second to the analytical mind that is slow, deliberative, conscious, effort-
ful, and serial [Kah11, ES13]. From this point of view, the learners deliver System 1 intelligence by
producing fast black boxes that correspond to the learned functions f , while solvers exhibit System 2
intelligence by computing the outputs f(x) for each given model instance x by reasoning.

A crucial difference between the human mind and current AI systems, however, is that Systems
1 and 2 are tightly integrated in the workings of the mind, while learners and solvers rarely talk
to each other. This limitation explains why for example self-driving cars are unlikely to be deployed
anytime soon: they are Systems 1 only, and as such, they cannot be trusted in open worlds where
unexpected situations are bound to happen. By learning representations that enable reasoning on a
case by case basis, RLeap will contribute to make AI systems from data that are able to integrate
System 1 and System 2 intelligence.

3 Objectives (Summary)

The basic goal of the project is to address and solve the problem of learning first-order symbolic
representations from raw perceptions alone in the context of planning where representations
play a key role and their structure is known and provides the basic properties of compositionality,
reuse, and transparency. This basic goal corresponds to Objective 1 below; Objectives 2 to 4
address closely related goals.

Objective 1: Learning representations for planning. A planning problem P = 〈D, I〉 combines a
first-order domainD that contains action schemas, predicate symbols, and first-order atoms defining
preconditions and effects, and instance information I = 〈O, Init,Goal〉 that encodes the relevant
objects O and the sets of ground atoms that express the initial and goal conditions [McD00, HLMM19].
A planning problem P defines a directed graph G(P ) whose nodes n represent the states s = s(n)
over P , and whose edges (n, n′) represent the state transitions. The states are represented by sets of
ground atoms; namely, those that are true in the state.

For definining the basic representation learning problem, let an image graph G be a directed
graph where each node n is associated with an observation that we take to be a raw image v(n). The
image graph can be obtained by sampling a large number of observed trajectories. We will assume
that the graph is complete initially; namely, that all the possible observed trajectories are in the graph.
The assumption is feasible if the problems used for training are small, i.e., if they involve hidden state
spaces that are not too large, an idea that is compatible with curriculum learning [BLCW09].

The basic representation learning problem is to infer the symbolic, first-order represen-
tation of a set of planning instances Pi = 〈D, Ii〉, i = 1, . . . , n with a common domain D from input
data given by a set of image graphs G1, . . . , Gn. As an example, consider 2D worlds that represent
rectangular grids where an agent can move one unit at a time, collect keys one a time, and drop them.
The observed trajectories can be generated with a simulator and a graphics engine. The learning
problem is to infer the first-order representations Pi = 〈D, Ii〉 that account for the observations. This
means discovering predicate symbols like loc1, key1, adjacent2, hold1, handfree0, action schemas
like move2, pickup2, drop2, and so on, or equivalent representations, from raw perceptions alone.

A key assumption is that different states give rise to different images. Partial observability and
non-deterministic actions will also be considered on top of this basic setting, taking advantage that
the languages used for planning in the richer settings are built on top of this basic language [YLWA05,
CCO+12]. Noisy observations will be addressed too. The basic problem, however, is central and
challenging enough, and far from being solved.

Objective 2: Learning representations for generalized planning. Generalized planning studies
the methods for expressing and obtaining plans that will solve not just one planning instance but
multiple instances. For example, a general plan for solving any instance of the domain where
a key is to be picked up and delivered to a target location is simple: the agent has to go to the
key, pick it up, go to the target location, and drop it. The challenge is to obtain such general plans
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automatically [SIZ08a, BPG09, SIZ11, HD11, BL16, SAJJ16, IM19]. In recent years, it has been
shown by the PI and others that such general plans can be derived through reductions and off-the-
shelf planners from a generalized model that provides a common abstraction of the instances to
be solved [BG18b, BFG19]. Objective 2 is learning such generalized models directed from
perceptual data. The objective ties closely with knowledge representation on the one hand, and
learning on the other. Indeed, learning approaches are not aimed at finding plans for single instances
but general plans [CBBL+19, FLBPP19, GS19].

Objective 3: Learning hierarchical representations. In order to compute plans it is often
necessary or convenient to plan at different levels of abstractions, with the constraints among the
different levels playing a crucial role. Indeed, a high-level plan is useless if it can’t be brought down to
the lowest level for execution [BY91]. In planning and reinforcement learning, hierarchies and high level
actions or options have been defined mostly by hand [HTD90, NAI+03, GA15, BAH19, SPS99]. In
spite of many efforts [KB07, MRW07, BHP17, MBB17], the key problem that remains open and will
be addressed in RLeap is how to discover crisp, symbolic hierarchical representations automatically,
constructing successive layers of abstractions from the bottom up. The new elements that will be
exploited are the intimate connection between hierarchical planning and generalized planning, as
hierarchical plans are hierarchical general plans, and recent work by the PI and team that
shows how abstractions for generalized planning can be obtained automatically from a first-order
symbolic representation of the domain [BG18b, BFG19].

Objective 4: Theory of representations for planning and learning. There are two implicit
assumptions in the project: one that the target representations to be learned are simple (have a low
dimensionality), the other, that planning with these representations is simple as well (low polynomial
time). These assumptions hold well in planning where 1) domains involve a bounded number of action
schemas and predicate symbols, 2) planners scale up well [BG01, HN01, RW10, LG17a], in spite of
the worst-case complexity results [Byl94]. Some of the new algorithms are indeed exponential in a
width parameter that is small and bounded for most planning domains when goals are single atoms
[LG12, LG17b, LG17a, FRLG17]. The formal proofs that establish that a domain has bounded width
actually uncovers domain features (numerical state functions) that may shed light on two apparently
unrelated open problems in generalized planning and reinforcement learning: what are the
features required for producing general plans in a given domain, and what are the features that make
linear function approximations work in a given domain [SPLC16a, BDD+19, BGP19]. Objective 4 is
about developing a theory that formally relates the features that appear in three contexts, which may
have much in common: width analysis, linear function approximation in RL, and generalized
planning.

4 Feasibility and Novelty (Summary)

The feasibility and novelty of RLeap rest on two main premises and the way in which we will
formulate them mathematically and computationally. First, that the language for extracting, using,
reusing, and composing knowledge is the language of first-order symbolic representations, and that it
is not necessary nor convenient to learn the structure of such languages from scratch. Second, that it
is precisely the structure of such languages that provides the strong structural priors that make
the learning of crisp representations feasible and data efficient.

RLeap will not follow deep learning approaches in assuming that the target representations emerge
from the learning process through the use of suitable neural architectures (e.g., attention mechanisms)
and loss functions (e.g., that penalize entanglement). Instead, RLeap will make first-order representa-
tions the explicit target of the learning process, and by doing so, it will decompose the representation
learning problem in two: a representation discovery problem, that is a purely combinatorial
problem, and a semantic interpretation problem, that is a supervised learning problem with tar-
gets obtained from the first part. Going back to the example above: discovering the action schemas
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with the predicate symbols loc1, key1, adjacent2, hold1, handfree0 or equivalent ones from the input
graphs is the representation discovery problem. Learning the functions that provide the denotation of
such logical symbols in the images is the semantic interpretation problem.

The representation discovery problem is combinatorial because the number of possible
domains given a bound on the number of action schemas, predicate symbols, and their arities, is
bounded. The values of these parameters are bounded and small, and do not grow with the size of
the instances. The problem of learning the simplest planning instances Pi = 〈D, Ii〉 that account for
a number of input image graphs Gi, i = 1, . . . ,m can then be cast and solved as a combinatorial
optimization problem. An instance Pi accounts for the image graph Gi if the graph G(Pi) associated
with Pi is structurally equivalent (isomorphic) to the plain graph Gi; i.e., if the graph Gi, leaving the
images aside, is generated by the planning instance Pi.

A key property of this view is that the first-order symbolic representations that are learned from
the input graphs G1, . . . , Gm, i.e., the action schemas and the predicate symbols, do not depend on
the raw images v(n) associated with the nodes n but on the structure of the graphs. This means
that the way in which objects are displayed on the images may change but the resulting representation
will not. This is very different from works where the representations are obtained from auto-encoders
and hence are low dimensional representations of the images [KW14, AF18, Asa19]. In the proposed
formulation, the symbolic representations do not provide a compact encoding of the images
but of the structure of the state space.

The images play a key role in the semantic interpretation problem that must yield the func-
tions that provide the denotation of the learned predicate symbols in the images; namely, the tuples
of objects that satisfy the predicate in the image. The problem is similar to the semantic scene
interpretation problem [NM08, KZG+17, DSG17] where a raw image must be mapped into a logical
formula that describes the contents of the image, in our case, the set (conjunction) of ground atoms
p(c1, . . . , ck) that are true in the image for each of the learned predicate symbols p. In our setting,
however, the semantic interpretation problem does not require labeled examples (supervision) as
the solution of the representation discovery problem matches the nodes n in the graphs Gi with states
s(n) in the graphs G(Pi), so that every image v(n) is associated with a set of atoms s(n).

The semantic interpretation problem is not trivial but it is much simpler than the full repre-
sentation learning problem itself, and can be addressed through a principled combination of fast
convolutional object detectors [RDGF16, RF17], relation classifiers [ZK15, SRB+17, SYZ+18]
and combinatorial optimizers [BJM+18, FM06, ABL13, MML14], that yield the most likely scene
interpretation in terms of the learned predicate symbols, using extra logical constraints and invariants
that can be obtained from the learned planning instances Pi [Hel09, Rin17].

These ideas pertain mainly to Objectives 1 and 2. Objective 3 is about constructing new symbolic
representations from given (learned) symbolic representations, and so is the problem of aligning these
symbolic representations with given goal instructions. Objective 4 is about elaborating a theory of
tractable representations for plannning and learning. The work in these two objectives will benefit
from the expertise of PI and his team that introduced the notion of sound abstractions for generalized
planning [BDGGR17, BG18b, BFG19], and the notion of width [LG12, LG17a, LG17b, FRLG17].

RLeap aims at methods that are domain-independent and that can be evaluated empirically in
the way that planners and SAT solvers are tested in competitions. The methods to be developed
are to be applicable to existing simulation platforms like ALE, for the Atari games [BNVB13], and
GVG-AI, for general video-games [PLST+15], but for getting there, we will move one step at a time.
We are not just interested in performance and coverage, but also in understanding. There are indeed
model-based RL approaches for some of these domains based on the prediction of screens and rewards
[OGL+15, KBM+19], but none that builds meaningful first-order symbolic representations from the
screen that are used to plan.
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5 State of the art. Related Research

AI systems that are general, explainable, and trustworthy require System 1 and System 2 intelli-
gences tightly integrated, yet practically no current system achieves an integration of this sort. The
AlphaZero program [SSS+17, SHS+18], that achieved suprahuman performance in Go and Chess,
integrates a deep reinforcement learner [MKS+15] and a Monte Carlo Tree Search (MCTS) planner
[KS06, CWH+08], but the learning is about the level of play, not about the model that is fixed and
known in advance. More general AI systems will have to learn models from data, and moreover, the
learned models must be structured in terms of objects and relations to facilitate reuse, transparency,
and compositionality. RLeap is aimed at this challenge in the context of planning where first-order
representations are known to provide these benefits [McD00, HLMM19]. These representations for
planning, however, are written by hand. The main challenge addressed by RLeap is to learn them
from raw perceptions alone.

Model learning is the goal of model-based reinforcement learning where the model parameters
of a Markov Decision Processes (state transition probabilities and rewards) are learned by active
exploration [SB98, BT03]. In the standard setting, the states are given and assumed to be fully
observable but what is learned in one model does not transfer easily to other models. In particular,
no high-level symbolic representations are learned. An exception is the work on object-oriented
MDPs that starts and refines a first-order symbolic representation made up of objects, types,
and relations [DCL08, HMT15]. Similar work has been done in classical planning [YWJ07, AJOR19].
In the two cases, however, the first-order symbolic models are obtained using predicate symbols with
a known meaning that are given. Inductive logic programming approaches have this form as
well obtaining symbolic representations for new concepts in the form of logic programs from given
symbolic predicates and a number of positive and negative samples [MDR94, DRK08]. Variations of
these ideas have been used in hybrid learning schemes that integrate symbolic and deep learning
[MDK+18, KP18, SG16, XZF+18, GGL+19, EG18] and in relational reinforcement learning for
obtaining general policies [Kha99, MG04, FYG04, DDRD01, KODR04]. A general policy is a policy
that can solve problems that involve different sets of objects, configurations, and state spaces. More
recently, deep learning methods have been used to obtain such policies, but once again, starting
with the first-order (PDDL) symbolic representations of the domains [TTTX18, BdBMS19, IFT18,
BG+18a]. A model-based approach for obtaining general policies from the same representations is
developed in [BG18b, BFG19]. A related formulation finds abstract symbolic representations from
low level symbolic representations and a given set of high-level options [KKLP18].

Deep reinforcement learning (DRL) methods have emerged as the main approach capable of
generating general policies over high-dimensional perceptual spaces without using any prior sym-
bolic knowledge [MKS+15, SHM+16, SSS+17]. Yet by not using or constructing first-order symbolic
representations, DRL methods have not managed to obtain the benefits of transparency, reuse, and
compositionality [CBBL+19, Mar18a, LB17]. Recent work in deep symbolic relational reinforcement
learning [GS19] attempts to account for objects and relations through the use of attention mecha-
nisms and suitable loss functions, but the semantic and conceptual gap between these low level
techniques and the high-level representations that are required remains just too large. Some-
thing similar occurs with work aimed at learning low dimensional representations that disentangle the
factors of variations in the data [TBF+18, FLBPP19]. The first-order representation used in planning
have indeed a low dimensionality given by a small number of action schemas, predicate symbols, and
atoms, but it is not clear how such representations can emerge bottom up from current architectures.

A recent deep learning approach infers compact representations for planning from raw images alone
using a class of variational autoencoders where the representations provide a low dimensional
encoding of the images [AF18]. Follow up work has extended this approach for producing first-
order planning representations as well [Asa19]. It is far from clear, however, that the high level
representations that are required are compact encodings of images. The standard PDDL planning
files do not actually codify images but some of the structural relations that appear in the images.
Moreover, it may be difficult to get crisp, compact symbolic representations when representations are
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forced to encode the images themselves.
RLeap departs from existing approaches to representation learning by assuming that the target

representations encode the structure of the state space, not the way in which the states are
visualized. In other words, if the images used to display the states are changed, while keeping the
condition that different hidden states are displayed differently, the perceived state space and the
first-order representations that are obtained from it, will not change. What will change in that
case is the interpretation of the symbols learned in the images. We draw for this on the distinction
between symbols and their denotation in first-order logic [Men09, HR04]. A first-order semantic
interpretation provides a denotation to every (non-logical symbol) so that every (closed) first-order
term and formula can be evaluated. In particular, terms t denote objects from the interpretation
domain, and predicate symbols p denote boolean functions. The denotation of an atom like p(t1, . . . , tk)
is true if the denotation of p maps the tuple of objects denoted by the terms t1 to tk into true. The
extension of the predicate symbol p in the interpretation is defined as the set of object tuples that are
mapped to true, and it is an alternative representation of the denotation function of p.

6 Objective 1: Learning representations for planning

6.1 Planning

Planners are solvers for models that involve goal-directed behavior [RN09, GB13, GNT16]. Planners
and planning models come in many different forms depending on a number of dimensions including:
1) uncertainty about the initial situation and action transitions, 2) type of sensing, 3) representation
of uncertainty, and 4) type of objectives. These four aspects affect the complexity of planning and the
form of plans. All planners that scale up make heavy use of the compact representation of planning
problems. In classical planning, one of the main techniques is to search for paths connecting the initial
state to a goal state in the implicit graph G(P ) defined by a problem P whose size is exponential in the
number of variables in P . For guiding the search, a heuristic h(s) that estimates the cost to go from a
state s to the goal is derived in low polynomial time from a simplification (relaxation) of the problem
[McD99, BG01] Current planners make use of this idea and a number of extensions [HPS04, RW10]
that also rely heavily on the compact representation of planning problems.

6.2 Target representations for planning

A (classical) planning problem P is given in terms of a first-order domain D and instance in-
formation I as a pair P = 〈D, I〉. A planning domain D contains a set of action schemas, a set of
predicate symbols, and first-order atoms describing the preconditions and effects of the action schemas.
The instance information is a tuple I = 〈O, Init,Goal〉 where O is a (finite) set of object names ci,
and Init and Goal are sets of ground atoms p(c1, . . . , ck) where p is a predicate symbol in D of arity
k. This is the structure of planning problems expressed in the PDDL standard [McD00, HLMM19]
that corresponds to STRIPS schemas [FN71]. Most current planners take a planning problem P and
for efficiency reasons, ground it first by replacing the action schemas by their possible instantiations
over the constants in O. The first-order representation of the domain D is necessary for defining new
instances in terms of new tuples I = 〈O, Init,Goal〉. The name of the constants in O is irrelevant and
it is possible to replace them by numbers in the interval [1, N ] where N = |O| stands for the number
of objects in O.

A problem P = 〈D, I〉 defines a directed graph G(P ) = 〈V,E〉 where the nodes are associated with
states s over P , i.e., sets of ground atoms p(c1, . . . , ck), with a root node representing the initial state
Init, and edges (s, s′) representing the state transitions enabled by the ground actions in P . A plan
for P corresponds to a sequence of ground actions from P that connects the root node in G(P ) with
a node that represents a goal state; i.e., a set of atoms that includes those in Goal. Since the size of
this graph is exponential in the number of ground atoms in the problem, planning algorithms that
search for such paths ignoring the structure of the planning problem P do not scale up.
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6.3 Learning the target representations for planning

The basic representation learning for planning problem addressed by RLeap can be described
as follows:

Given data in the form of a set of image graphs G1, . . . , Gm with a raw image v(n)
(observation) associated with every node n. Find 1) the first-order representation of the
planning problems Pi = 〈D, Ii〉 that best account for the given graphs Gi, i = 1, . . . ,m,
and 2) the denotation functions of the learned predicate symbols over the images.

The problems 1) and 2) are called the representation discovery and semantic interpretation
problems respectively. In addition, a third problem, goal interpretation, is about learning to inter-
pret the external goal instruction in terms of the symbolic language learned. Recall that an image
graph is a plain directed graph where every node n has an associated raw image v(n).

Representation discovery

It is assumed that the representations to be learned encode the structure of the state space and not
the way in which the states are displayed. As a result, the symbolic representations are obtained from
the structure of the image graphs and not from the images associated with the nodes. The basic
representation discovery problem is thus:

Given a set G1, . . . , Gm of plain graphs, corresponding to the image graphs with the
observations v(n) excluded. Find the first-order domain D and instances Pi = 〈D, Ii〉
such that the pairs of graphs G(Pi) and Gi are structurally equivalent (isomorphic) for
i = 1, . . . ,m.

In other words, the planning instances Pi = 〈D, Ii〉 account for the observed graphs Gi

when these graphs could have been generated by these instances. We express that the graphs
G(Pi) and Gi are isomorphic by writting G(Pi) = Gi, and write s(n) to denote the state over the
instance Pi that corresponds to the node n in the input graph Gi.

As an example, the graphs may display the transitions in a 2D world where an agent moves
one unit at a time in a rectangular grid, collecting keys, one a time, and dropping them. One
input graph Gi may be for a 3x4 grid and 2 keys, and another one, for a 5x6 grid and 3 keys.
The representation discovery problem would have to produce the general domain D and the
instances Pi = 〈D, Ii〉 whose graphs G(Pi) must match the observed graphs Gi. This means coming
up with a first-order representation involving predicate symbols like loc1, key1, adjacent2,
hold1, handfree0 and action schemas like move2, pickup2, drop2, or equivalent ones, where the
numerical superindex is used to denote the arity of predicates and action schemas. In addition, the
instance information Ii = 〈O, Init,Goal〉 has to be discovered as well, providing the number of objects
|O| and initial situation Init of the planning instance Pi. The Goal plays no role in this problem.

This is a crisp formulation of the first problem of learning the representations for planning from
purely non-symbolic inputs (the input plain graphs Gi), that we expect to lead to crisp and meaningful
first-order symbolic representations. This is because the representations have to do with the structure
of the observed state space and not with the content of the images.

Representation discovery for planning is a combinatorial problem because the space of possible
domain representations that needs to be considered is bounded by a small number of parameters
that have bounded and small values. These parameters are the number of action schemas, predicate
symbols, and their arities. These parameters define how complex a domain representation is which is
relevant for finding the simplest domain D and instances Pi = 〈D, Ii〉 that account for the observed
graphs. While in principle, one could enumerate all possible candidate domains D and test them
with the possible instances Ii (whose size is bounded by the size of the graph Gi and the domain
parameters), this is not feasible in practice, and a much more efficient approach is to cast and solve the
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representation discovery problem as a combinatorial optimization problem, using SAT, Weighted
Max-SAT, or IP (Integer Programming) solvers. There are indeed excellent and scalable solvers that
can be used for this purpose off-the-shelf [ABL13, MML14, BJM+18].

Assumptions and Properties

This approach for obtaining symbolic representations from raw perceptions is very different from
existing approaches, and it is based on a crisp distinction between learning the symbolic representations
themselves, and learning how to interpret them over the images. Let us elaborate on the implicit
assumptions and some key properties.

First, it is assumed that the learner inputs are not observed traces or executions but complete
graphs. This distinction, however, is not critical, as we will consider graphs Gi associated with
small instances that involve small hidden state spaces. Then a sufficiently large number of sampled
executions in each instance yields the corresponding graph. Following Pearl’s account of causality
[PM18], the graphs define the space of possible causal interventions that allow us to recover the
causal structure of the domain in a first-order language.

Second, it is assumed that the hidden states are fully observable, meaning that two observations
(images) are different if and only if they are observations of different states. This means also that
observations are noise free. This is a natural place to start but this assumption can be relaxed in
the combinatorial optimization formulation in a standard way by penalizing departures from this ideal
noise free condition. In a slightly different form, partial state observability and non-deterministic
actions are to be handled as well, but leaving the basic setting intact. Notice indeed that the compact,
first-order languages used for representing probabilistic planning problems, like Probabilistic PDDL
[YLWA05], are small variations of the languages used for representing classical problems, and hence,
would involve a small change in the structure of the target languages to be learned.

A key property of this view of representation learning that is different from all other approaches is
that the resulting symbolic representations depend on the structure of the input graphs but not in the
way in which nodes are mapped to images. In other words, the resulting symbolic representations
are independent of the way in which objects and relations are displayed in the images.
The learned representations encode in a compact manner the structure of the observed state spaces,
not the state observations (images) themselves.

Verification

The first-order representations Pi = 〈D, Ii〉 are learned from a set of graphs Gi, i = 1, . . . , n. It is
possible to verify the representations learned for the domain D by leaving some graphs Gk for testing
only, as it is standard in supervised learning. For this, the learned domain D is verified with respect
to each testing graph Gk individually, by checking whether there is an instance Pk = 〈D, Ik〉 such that
the graphs G(Pk) and Gk are structurally equivalent. This is a simpler version of the problem above
where the domain representation D is fixed.

Semantic Interpretation Problem

The discovered representations are sufficient for computing plans for new instances P = 〈D, I〉
provided that the instance information I = 〈N, Init,Goal〉 is encoded by hand in terms of the
predicate symbols learned. This is indeed the way that planning problems are modeled and solved.
However, in the learning setting, we want the agent to accept new instances in a different way, in
particular, by providing the initial state of the pronlem by means of an image. The semantic
interpretation problem is the problem of learning to map raw images into first-order states (sets
of ground atoms):

Given 1) a set G1, . . . , Gn of image graphs where every node n has an associated image
v(n), and 2) the planning instances Pi = 〈D, Ii〉, i = 1, . . . , n discovered from these
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graphs. Derive an interpretation function that maps images w into pairs 〈N(w), s(s)〉
where n(w) is the number of objects in the image w, and s(w) is the state encoded in
the image, given by the set of ground atoms p(c1, . . . , ck) that are true in w, where p is a
predicate symbol from D of arity k and ci is an object id, 1 ≤ ci ≤ N(w).

The semantic interpretation problem is a simplified version of the scene interpretation problem
where a raw image must be mapped into a logical formula that describes the contents of the image
[NM08, KZG+17, DSG17]. The differences are mainly two. First, the output formula is restricted by
the predicate symbols in the domain: we just need to find out whether the atoms p(c1, . . . , ck) that
can be built from the predicate symbols in the domain and the objects in the image are true or not.
Second, and most importantly, the semantic interpretation problem does not require labeled examples
(supervision) as the solution of the representation discovery problem provides the necessary targets
over the nodes in the input graphs. Indeed, if w = v(n) is the image associated with node n of the
input image graph Gi, the state s associated with w is s(n); namely, the state in the graph G(Pi) that
matches the node n from Gi.

The semantic interpretation problem is not trivial but it is much simpler than the full representing
learning problem and can be addressed through a principled combination of fast convolutional
object detectors that find the relevant objects in the image [RDGF16, RF17], relation classifiers
that map each of the possible atom p(c1, . . . , ck) into probabilities [ZK15, SRB+17, SYZ+18], and
combinatorial optimizers [ABL13, MML14, BJM+18] that assemble these local probabilities to
compute most likely global interpretation, using also extra logical constraints and invariants that can
be derived from the learned planning instances, like that the number of objects do not change from
state to state, or that certain atoms are mutually exclusive [Hel09, Rin17].

Several subtleties need to be mentioned concerning the targets for the semantic interpretation that
result from the solution of the representation discovery problem. First, the object ids obtained from
the object detectors need to be aligned with the object ids in the planning instances Pi. Second,
the information about the atoms p(c1, . . . , ck) that have been inferred to be true in an image needs
to be massaged so that it can be used to train the object detectors and relation classifiers. Third,
dynamic aspects as captured by the state transitions over the learned instances Pi may need to be
used to track the object ids in the images across time, in particular when actions affect the state of
multiple objects. This suggests that alternative learning approaches to the semantic interpretation
problem may need to be considered like recurrent neural networks [GMH13, Sch15, GBC16] or graph
embeddings [HYL17, ZYZZ18]. Yet there is no representation to be learned but just 1) the relation
between the constants ci in the instances Pi and the objects detected, and 2) the truth of the atoms
p(c1, . . . , ck). Both are to be learned automatically and without supervision using the rich information
that is available in the state graphs G(Pi) learned from the plain graphs Gi.

Goal Interpretation

The goal interpretation problem is about mapping external goal instructions given in a formal
language with a known syntax to the learned language of the agent. It is a symbolic learning problem
which does not involve raw perceptions. In its most simple form, when instructions are conjunctions
of ground domain atoms, the problem reduces to finding the correspondence between the learned
domain symbols and those used in the instructions. More generally, the unknown symbols of the goal
instructions will map into concepts and relations that are derivable from the symbols in the agent
language. The problem is semi-supervised as the agent needs feedback in order to know when
the goal instructions have been accomplished. Versions of this problem have been considered in the
literature of grounded language learning [YS13, HHG+17, CBBL+19], but once again our problem
is simpler as the agent language has been learned and the goal instructions will be assumed to be given
in a formal language with a known syntax.
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Summary. Objective 1 is about learning first-order symbolic representations for planning from
traces of images organized into image graphs. Representation discovery is cast as a com-
binatorial optimization problem where the target representations must account for the structure
of the graphs. Semantic interpretation is about learning to map images into states (sets of
ground atoms). Goal interpretation is about aligning the learned symbolic language with the
formal language of the goal instructions. The result would be the first model-based planning
framework where crisp, reusable, first-order symbolic models are learned from raw perceptions
alone.

7 Objective 2: Learning representations for generalized planning.

7.1 Generalized planning

Generalized planning studies methods for expressing and obtaining plans that solve multiple instances,
sometimes all instances of a given domain [SIZ08b, BPG09, HD11, IM19]. For instance, a general
plan for solving any instance of the domain where a key is to be picked up and delivered to a
target location is simple: the agent has to go to the key, pick it up, go to the target location, and
drop it. This is a general strategy that works no matter the initial or target locations, or the grid
size. The challenge is obtaining such generalized plans automatically. The problem ties closely with
both knowledge representation on the one hand, and learning on the other. Indeed, the general
plans require an abstract language that often is not the language of the domain itself. Likewise,
learning approaches are not aimed at finding plans for single instances but general plans that solve
multiple instances [SSS+15, TBF+18, FLBPP19]. Generalized planning aims at the same type of
general plans, and by making use of the same types of inputs; namely, raw perceptions, RLeap will
contrast model-free and the model-based approaches to the computation of general plans where
models are not given but are learned.

7.2 Target representations for generalized planning

A general plan that covers many instances is derived from a generalized model that provides a com-
mon abstraction for the instances. The language of such abstractions is the language of qualitative
numerical planning [SZIG11, SZG+15, BDGGR17, BG19]. Qualitative numerical planning prob-
lems (QNPs) are propositional classical planning problems extended with non-negative numerical
variables X that can be increased (X↑) and decreased (X↓) “qualitatively”, i.e., by random posi-
tive amounts that cannot make the variables negative. A basic qualitative property of integer and
real variables is enforced: a variable X that is increased finitely often and decreased infinitely of-
ten, eventually must have value 0 (assuming that changes do not become infinitesimal). Aside from
effects containing increments and decrements, numerical variables X can appear in the initial situa-
tion, preconditions, and goals as literals of the form X = 0 or X > 0. Unlike numerical planning
[Hel02], qualitative numerical planning is decidable, and furthermore, QNPs can be reduced
(polynomially) to standard, boolean FOND planning (fully observable non-deterministic planning)
[CRT98, CPRT03, GB13] for which good, scalable solvers exist [MMB12, BM09, GG18].

QNPs provide a convenient abstract language for generalized planning. As an example, the gen-
eralized problem of clearing a block x can be expressed in terms of two abstract actions a and b:

a = 〈¬H,n(x) > 0 7→ H,n(x)↓〉 ; b = 〈H 7→ ¬H〉 .

where 〈C 7→ E〉 denotes an action with preconditions C and effects E. Here H is a boolean variable
that encodes if a block is being held and n(x) is a numerical variable that encodes the number of
blocks above x. The action a abstracts the action of picking up a block that is above x, making H
true and decrementing n(x), while b abstracts the actions that put those blocks aside, making H false
and without affecting n(x). A general policy for achieving the goal clear(x) is given by the rules:
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if n(x) > 0 and H, do b, , if n(x) > 0 and ¬H, do a

The abstract actions a and b are provably sound in the sense that they can always be instantiated to
one or more ground actions of the domain that have the same effect on the variables n(x) and H as
the actions a and b themselves [BG18b, BFG19].

7.3 Learning the target representations for generalized planning

Objective 2 is about learning representations for generalized planning in terms of QNPs from raw
perceptions alone. The same problem, but with given first-order domain representations, has
been recently formulated and solved by the PI team [BFG19]. The achievement of Objective 1, where
these domain representations are learned from data, provides thus a way to achieve Objective 2. For
this, the domain is learned from the perceptual data and it is then fed to the pipeline described in
[BFG19]. This combination is natural and will be implemented and tested, , but in RLeap, we want
to pursue a second, alternative approach as well: we want to learn the abstract QNP representa-
tions directly from the perceptual data. From a theoretical point of view, this involves a different
formulation and a different target language to learn, that will shed new insights on representation
learning. From a practical point of view, there are two benefits. First, learning the abstraction from
data is simpler than learning the first-order domains because the abstract language of QNPs does not
feature action schemas and predicates but boolean and numerical variables. Second, the boolean and
numerical variables to be learned do not have to be definable in terms of the domain symbols and a
given general grammar [BFG19]. From the point of view of expressivity, the abstractions provided by
QNPs are appealing because they are suitable for representing both discrete and continuous change.

Representation discovery for generalized planning

A first approximation of the representation learning problem for generalized planning can be
expressed as follows.

Given 1) a set of directed graphs G1, . . . , Gm, 2) a raw image v(n) (observation) for every
node n, and 3) goal labels for some nodes. Derive the simplest abstraction (QNP) that
accounts for structure of the graphs Gi and the distinction between goal and non-goal
nodes.

In some cases, we will consider variations of this basic setting where edges in the input graphs
Gi are labeled with action types that we do not want to abstract in the same class (simple labels
such as move, pick-up, and drop). We call the graphs Gi with some nodes labeled as goals, goal
graphs. The goal labels are crucial because the resulting QNP provide a common abstraction
of the graphs Gi for achieving those goals. Different goal labels are likely to lead to different
abstractions, with different abstract actions and variables [BG18b, BFG19].

A QNP P accounts for a given goal graph if the QNP provides an abstraction of the graph, and
more precisely, if the graph Gi can be embedded in the QNP. For this, let s(n) represent a valuation
over the boolean and numerical variables in P , and let s0(n) represent the boolean projection of s(n),
namely s(n) but with the numerical values s(n)[X] replaced by true (false) if s(n)[X] = 0 is true
(resp. false). Let each edge (n, n′) in the input graphs Gi be assigned an action from P , denoted
a(n, n′). The functions s(·) and s0(·) map each nodes of the goal graphs into a real and boolean
vector respectively, and the function a(·, ·) maps each edge of the goal graphs into a vector of actions.
For the QNP P to account for the graphs Gi, these embeddings must comply with some structural
constraints analogous to the ones in [BG18b, BFG19]:

• Consistency: the states s(n) and the actions a(n, n′) assigned to nodes and edges must be
consistent; e.g. if a(n, n′) decreases X, then s(n′)[X] < s(n)[X], etc.
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• Goals must be distinguished; i.e., s0(n) 6= s0(n
′) if exactly one of n and n′ is a goal.

• Soundness: if s0(n1) = s0(n2) and a(n1, n
′
1), there must be an edge (n2, n

′
2) s.t. a(n2, n

′
2).

The first two constraints are direct; the third says that if the embedding makes two nodes n1 and n2
indistinguishable because all boolean and numerical variables in s(n1) and s(n2) have the same boolean
value (the boolean value of a numerical variable X is s0[X]), then the same abstract actions should be
applicable in both. For generalization, it is necessary to find the simplest QNP that complies with
these constraints which, for a bound on the possible number of boolean and numerical variables in
the QNP, makes the problem a constraint optimization problem. For this, the state assignments
have to be regularized by forcing the numerical variables to be have (non-negative) integer values,
and the magnitude of increments and decrements to be 1. These are constraints for learning that do
not apply to the learned QNP, where increments and decrements remain non-deterministic.

From the point of view of machine learning, the formulation yields a graph embedding that
complies with crisp structural constraints [HYL17, ZYZZ18]. Embeddings of nodes and words in
machine learning refer to mappings into high dimensional real vectors via deep neural networks
that can trained to preserve certain properties, like that vectors of similar inputs must be closer
than vectors of disimilar inputs [MCCD13]. Deep networks, however, are used to compute graph
embeddings for settings like book recommendations, where the graph embeddings do not have to be
symbolic or crisp. The proposed method is not intended to compete with such methods in those
settings but it is aimed at producing crisp abstract representations when such representations exist, a
property that does not hold for deep learning methods.

Semantic interpretation for generalized planning

The formulation above accepts a set of input goal graphs Gi and results in a general abstract planning
representation in the form of a QNP whose solution via reductions to FOND planning [BDGGR17,
BG18b] yields a general policy π that achieve the goal in the given graphs and in new problems that
result in graphs covered by the same abstraction. In order to apply the policy π to a new instance
expressed as a raw image, however, it is necessary to learn a mapping from images into QNP states,
which are vectors of boolean and numerical values.

The formulation and the methods for learning such functions are similar to the ones discussed for
planning where the semantic interpretation task was to learn the denotation of the learned predicate
symbols in an image. In the generalized planning setting, however, this problem is simpler as there
are neither objects nor predicate symbols but a fixed number of boolean and numerical variables. As
before, the targets for learning their values from images are obtained from the embedding produced
by the combinatorial optimization solver. If w = v(n) is the image associated with node n and the
embedding yields the values s(n)[p] = true and s(n)[X] = 5, then the target values for p and X in the
image w are true and 5 respectively.

Summary. Objective 2 is about delivering a model-based approach to generalized plan-
ning from raw perceptions alone from a set of input goal graphs. The problem of learning
the QNP model that provides a common abstraction to the graphs is cast as a combinatorial
optimization problem (representation discovery). The QNP abstraction is solved via existing
reductions and off-the-shelf planners resulting in general plans. For applying these plans to new
instances, the mapping from images to the fixed-size vector of boolean and numerical variables
in the learned QNP must be learned using targets derived from the first part (semantic in-
terpretation). This will be the first model-based approach to generalized planning that, like
model-free, learning approaches, computes general plans form raw perceptions alone, but from
abstract models that are learned.
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8 Objective 3: Learning hierarchical representations

In order to compute plans it is often necessary or convenient to plan at different levels of abstractions
with the constraints among the levels playing a crucial role. Indeed, a high-level plan is useless if it
can’t be brought down to the lowest level for execution [BY91]. In planning and reinforcement learning,
hierarchies and high level methods or options have been defined mostly by hand [GA15, BAH19,
SPS99, Die00, MRW07]. In spite of many attempts, the key problem that remains open and will
be addressed in RLeap is how to construct crisp, symbolic hierarchical representations automatically,
by building successive layers of abstractions from the bottom up.

The new elements that will be exploited for addressing this challenge are 1) the intimate connection
between hierarchical planning and generalized planning, and 2) recent work by the PI team that
shows how abstractions for generalized planning can be obtained automatically given the first-order
symbolic representations of the domain [BG18b, BFG19]. About the first point, the relation between
hierarchical and generalized planning is direct: the hierarchies are not tailored to particular instances
but apply to any instance of the domain. For example, a hierarchical representations for the problem
of delivering a key to a target location, similar to the standard Taxi problem used in reinforcement
learning [Die00], involves the high level methods of moving to the key to pick it up, and moving to the
target location to leave it, abstracting away the low level moves needed in each case. These methods
are general: they apply to multiple versions of the problem where the initial, target locations, and
maps change. Given the direct relation between hierarchical representations and generalized planning
it is not difficult to understand the obstacles and limitations that existing and past approaches for
deriving hierarchical representations have faced: in order to infer hierarchical representations that
can be used to produce hierarchical strategies, it is necessary to understand how to infer abstract
representations for producing general plans. Indeed, hierarchical plans are hierarchical general
plans that may get instantiated in different ways just as flat general plans are.

The second new element to be exploited is a recent formulation for learning abstract repre-
sentations for generalized planning given the first-order symbolic representation of the domain and
sampled goal traces [BFG19]. The resulting abstractions are sound, meaning that the resulting
general policies can always be instantiated to a ground plan. The abstraction, however, reduces ab-
stract actions into single ground actions depending on the context. It is often necessary to create
abstractions where single abstract actions reduce action sequences as well. One way to proceed with
this is by using the general policies for achieving some goals as abstract actions for achiev-
ing other goals. For example, the general policy for achieving the goal clear(x) can be used as an
abstract action for achieving the goal on(x, y), and the general policy for achieving on(x, y) can be
used as an abstract action for constructing arbitrary towers, and so on. This intuition of building
successive layers of abstraction automatically from the bottom up is not new. What was missing
was the formal foundation on which to formulate this intuition correctly. One particular challenge
resulted from the non-deterministic effects of high-level actions on low level variables [MRW07]. A
second challenge involved the constraints required for ensuring that abstract plans can be grounded
and executed at the lowest level [BY91]. The work on generalized planning by the PI and others
addresses these challenges: unlike classical plans, general plans are not affected by uncertain outcomes
because the possible outcomes define instances covered by the general plans. Similarly, the notion of
sound abstractions and the proposed methods for learning them ensure that the abstractions can
be instantiated and executed at the lower levels.

Summary. Objective 3 is about building hierarchical symbolic representations for planning from
raw perceptions. The new elements to be exploited are the close relation between hierarchical
planning and generalized planning, and the methods developed for learning sound abstractions
for generalized planning from given symbolic representations. Objective 3 will result in general
and robust methods for building successive layers of reusable abstractions from the bottom up
for supporting high-level planning.
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9 Objective 4: Theory of representations for planning and learning

One of the most compelling explanations for the wide gap that exists between the complexity of
planning [Byl94] and the performance of current planners [RW10, LG17a] is based on a notion of
planning width introduced and explored by the PI and his team [LG12, LG17b].1 The width w
of a problem can go from 1 to the number of problem variables and a simple width-based planning
algorithm, called IW, has been developed that runs in time that is exponential in the problem width.
What makes this result relevant is that in most domain benchmarks, the width of the problems is
bounded and small when the goals are single atoms. For example, the problems of achieving goals like
clear(x) and on(x, y) in any Blocks world instance have width bounded by 1 and 2 respectively. This
means that the width-based algorithm will solve any instance of the first problem in linear time, and
any instance of the second in quadratic time, even though the size of the state space is exponential.
Variations of this idea are used in state-of-the-art algorithms [LG17b, LG17a, FRLG17].

Objective 4 is aimed at a theoretical understanding of the type of planning representations that
are easy to learn and that make planning easy too. The two conditions are related, as in the worst
case, actions would affect many variables making both planning and learning hard (on average). For
formulating and addressing the relevant questions, we will start by trying to connect three apparently
disparate notions: planning width, generalized planning, and linear decomposition of the
value function as studied and used in reinforcement learning [SB98, Ber95, Sze10]. One important
open problem in reinforcement learning is the characterization of the features that make linear
function approximations work in a given domain, i.e., the numerical features φi(s) that approximate
the optimal value function as a linear combination of the form

∑
iwiφi(s) where the coefficients wi

are constants that do not depend on the state. The problem is important because, even in (value-
based) deep reinforcement learning, the role of the deep net is to produce the features that are
linearly combined in the last layer [SPLC16b]. In spite of many efforts, there is not yet a compelling
and general theory for characterizing the required features [SPLC16a, BDD+19, BGP19]. Numerical
features play also a critical role in the abstract language for generalized planning and in the proofs
that establish that some domains have bounded width. Objective 4 is about developing a theory that
relates the features that appear in these three different contexts that may have much in common. For
example, the abstraction for achieving the general goal clear(x) involves the numerical feature n(x),
that encodes the number of blocks above x, and the boolean feature H that tests if a block is being
held. The length V ∗(s) of the shortest solution to achieve clear(x) from a state s is V ∗(s) = 2n(x)+H,
where the state s is implicit in n(x) and H, and H is counted as 1 or 0 according to whether H is
true in s or not. Finally, the feature n(x) appears in the proof that establishes that the width of all
these instances is 1. Objective 4 is about studying these correspondences formally for understanding
the structural reasons by which planning and learning over simple planning domains can be feasible
and simple, even when they span exponential spaces.

10 Environments

RLeap aims at methods that are domain-independent and robust, and which can be evaluated em-
pirically in the way that planners and SAT solvers are tested in competitions: by running them on
new problems and domains. As mentioned in Part B1, the methods must be applicable to existing
simulation platforms like ALE, for the Atari games [BNVB13], and GVG-AI, for general video-games
[PLST+15], but for getting there, we will move one step at a time, by building and dealing with simpler
scenarios first, including those developed for evaluating representation learning in deep reinforcement
learning [SSS+15, ZLS+18, CBBL+19]. We do not have plans to get into real 3D environments like
those involving robots. The ideas and methods developed in RLeap should be relevant then but are
not sufficient, and we do not want to overstretch, preferring to stick to the set of fundamental research

1The notion borrows from the treewidth notion that plays a similar role in graphical models like constraint satisfaction
problems and Bayesian networks [BB72, Fre82, Pea88, Dec03].
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problems described where we can deliver crisp, solid, significant results.

11 Conclusion

RLeap is aimed at a concrete scientific problem and some of its ramifications: learning structural
symbolic representations for planning from images without using prior symbolic knowledge. The
problem is central for developing flexible, transparent, and trusworthy AI systems, but it is largely
unsolved, with current ideas and methods proving to be inadequate. The challenge is big but we bring
to the project a number of concrete, promising ideas and formulations, many of them introduced by
the PI and his team. The potential gains are important, affecting the way AI systems are built, used,
verified, and queried, while providing an integration of data-based learners and model-based solvers
with their System 1 (reactive) and System 2 (deliberative) capabilities.
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